Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Biol ; : 1-13, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38631047

RESUMEN

Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.

2.
Med Sci Sports Exerc ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38595204

RESUMEN

PURPOSE: Maternal and postnatal overnutrition has been linked to an increased risk of cardiometabolic diseases in offspring. This study investigated the impact of adult-onset voluntary wheel running to counteract cardiometabolic risks in female offspring exposed to a life-long high-fat, high-sucrose (HFHS) diet. METHODS: Dams were fed either a HFHS or a low-fat, low-sucrose (LFLS) diet starting from 8 weeks prior to pregnancy and continuing throughout gestation and lactation. Offspring followed their mothers' diets. At 15 weeks of age, they were divided into sedentary (Sed) or voluntary wheel running (Ex) groups, resulting in four groups: LFLS/Sed (n = 10), LFLS/Ex (n = 5), HFHS/Sed (n = 6), HFHS/Ex (n = 5). Cardiac function was assessed at 25 weeks, with tissue collection at 26 weeks for mitochondrial respiratory function and protein analysis. Data were analyzed using two-way ANOVA. RESULTS: While maternal HFHS diet did not affect the offspring's body weight at weaning, continuous HFHS feeding post-weaning resulted in increased body weight and adiposity, irrespective of the exercise regimen. HFHS/Sed offspring showed increased left ventricular wall thickness and elevated expression of enzymes involved in fatty acid transport (CD36, FABP3), lipogenesis (DGAT), glucose transport (GLUT4), oxidative stress (protein carbonyls, nitrotyrosine), and early senescence markers (p16, p21). Their cardiac mitochondria displayed lower oxidative phosphorylation (OXPHOS) efficiency and reduced expression of OXPHOS complexes and fatty acid metabolism enzymes (ACSL5, CPT1B). However, HFHS/Ex offspring mitigated these effects, aligning more with LFLS/Sed offspring. CONCLUSIONS: Adult-onset voluntary wheel running effectively counteracts the detrimental cardiac effects of a lifelong HFHS diet, improving mitochondrial efficiency, reducing oxidative stress, and preventing early senescence. This underscores the significant role of physical activity in mitigating diet-induced cardiometabolic risks.

3.
Sci Rep ; 14(1): 7571, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555310

RESUMEN

Obesity is a growing concern in human and equine populations, predisposing to metabolic pathologies and reproductive disturbances. Cellular lipid accumulation and mitochondrial dysfunction play an important role in the pathologic consequences of obesity, which may be mitigated by dietary interventions targeting these processes. We hypothesized that obesity in the mare promotes follicular lipid accumulation and altered mitochondrial function of oocytes and granulosa cells, potentially contributing to impaired fertility in this population. We also predicted that these effects could be mitigated by dietary supplementation with a combination of targeted nutrients to improve follicular cell metabolism. Twenty mares were grouped as: Normal Weight [NW, n = 6, body condition score (BCS) 5.7 ± 0.3], Obese (OB, n = 7, BCS 7.7 ± 0.2), and Obese Diet Supplemented (OBD, n = 7, BCS 7.7 ± 0.2), and fed specific feed regimens for ≥ 6 weeks before sampling. Granulosa cells, follicular fluid, and cumulus-oocyte complexes were collected from follicles ≥ 35 mm during estrus and after induction of maturation. Obesity promoted several mitochondrial metabolic disturbances in granulosa cells, reduced L-carnitine availability in the follicle, promoted lipid accumulation in cumulus cells and oocytes, and increased basal oocyte metabolism. Diet supplementation of a complex nutrient mixture mitigated most of the metabolic changes in the follicles of obese mares, resulting in parameters similar to NW mares. In conclusion, obesity disturbs the equine ovarian follicle by promoting lipid accumulation and altering mitochondrial function. These effects may be partially mitigated with targeted nutritional intervention, thereby potentially improving fertility outcomes in the obese female.


Asunto(s)
Oocitos , Folículo Ovárico , Humanos , Caballos , Animales , Femenino , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Líquido Folicular , Obesidad/metabolismo , Lípidos , Suplementos Dietéticos
5.
J Biomech Eng ; 146(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329431

RESUMEN

Cardiomyocytes are viscoelastic and key determinants of right ventricle (RV) mechanics. Intracellularly, microtubules are found to impact the viscoelasticity of isolated cardiomyocytes or trabeculae; whether they contribute to the tissue-level viscoelasticity is unknown. Our goal was to reveal the role of the microtubule network in the passive anisotropic viscoelasticity of the healthy RV. Equibiaxial stress relaxation tests were conducted in healthy RV free wall (RVFW) under early (6%) and end (15%) diastolic strain levels, and at sub- and physiological stretch rates. The viscoelasticity was assessed at baseline and after the removal of microtubule network. Furthermore, a quasi-linear viscoelastic (QLV) model was applied to delineate the contribution of microtubules to the relaxation behavior of RVFW. After removing the microtubule network, RVFW elasticity and viscosity were reduced at the early diastolic strain level and in both directions. The reduction in elasticity was stronger in the longitudinal direction, whereas the degree of changes in viscosity were equivalent between directions. There was insignificant change in RVFW viscoelasticity at late diastolic strain level. Finally, the modeling showed that the tissue's relaxation strength was reduced by the removal of the microtubule network, but the change was present only at a later time scale. These new findings suggest a critical role of cytoskeleton filaments in RVFW passive mechanics in physiological conditions.


Asunto(s)
Ventrículos Cardíacos , Corazón , Viscosidad , Diástole , Microtúbulos , Elasticidad , Estrés Mecánico
6.
JACC Basic Transl Sci ; 9(1): 16-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362354
7.
Acta Biomater ; 176: 293-303, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272197

RESUMEN

Cardiomyocytes are viscoelastic and contribute significantly to right ventricle (RV) mechanics. Microtubule, a cytoskeletal protein, has been shown to regulate cardiomyocyte viscoelasticity. Additionally, hypertrophied cardiomyocytes from failing myocardium have increased microtubules and cell stiffness. How the microtubules contribute to the tissue-level viscoelastic behavior in RV failure remains unknown. Our aim was to investigate the role of the microtubules in the passive anisotropic viscoelasticity of the RV free wall (RVFW) during pulmonary hypertension (PH) progression. Equibiaxial stress relaxation tests were conducted in the RVFW from healthy and PH rats under early (6%) and end (15%) diastolic strains, and at sub- (1Hz) and physiological (5Hz) stretch-rates. The RVFW viscoelasticity was also measured before and after the depolymerization of microtubules at 5Hz. In intact tissues, PH increased RV viscosity and elasticity at both stretch rates and strain levels, and the increase was stronger in the circumferential than longitudinal direction. At 6% of strain, the removal of microtubules reduced elasticity, viscosity, and the ratio of viscosity to elasticity in both directions and for both healthy and diseased RVs. However, at 15% of strain, the effect of microtubules was different between groups - both viscosity and elasticity were reduced in healthy RVs, but in the diseased RVs only the circumferential viscosity and the ratio of viscosity to elasticity were reduced. These data suggest that, at a large strain with collagen recruitment, microtubules play more significant roles in healthy RV tissue elasticity and diseased RV tissue viscosity. Our findings suggest cardiomyocyte cytoskeletons are critical to RV passive viscoelasticity under pressure overload. STATEMENT OF SIGNIFICANCE: This study investigated the impact of microtubules on the passive anisotropic viscoelasticity of the right ventricular (RV) free wall at healthy and pressure-overloaded states. We originally found that the microtubules contribute significantly to healthy and diseased RV viscoelasticity in both (longitudinal and circumferential) directions at early diastolic strains. At end diastolic strains (with the engagement of collagen fibers), microtubules contribute more to the tissue elasticity of healthy RVs and tissue viscosity of diseased RVs. Our findings reveal the critical role of microtubules in the anisotropic viscoelasticity of the RV tissue, and the altered contribution from healthy to diseased state suggests that therapies targeting microtubules may have potentials for RV failure patients.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Humanos , Ratas , Animales , Ventrículos Cardíacos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/terapia , Viscosidad , Microtúbulos , Miocitos Cardíacos , Colágeno/metabolismo , Elasticidad
8.
Diabetes ; 72(12): 1766-1780, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725952

RESUMEN

Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS: In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.


Asunto(s)
Resistencia a la Insulina , Humanos , Animales , Embarazo , Femenino , Adolescente , Resistencia a la Insulina/fisiología , Macaca fuscata/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Insulina/metabolismo , Dieta Occidental/efectos adversos , Ácidos Grasos/metabolismo , Ceramidas/metabolismo , Dieta Alta en Grasa
9.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R523-R533, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642284

RESUMEN

Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Animales , Femenino , Embarazo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Feto/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Síndrome Metabólico/metabolismo , Músculo Esquelético/metabolismo , Placenta/metabolismo , Piruvatos/metabolismo , Ovinos
10.
Front Bioeng Biotechnol ; 11: 1182703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324443

RESUMEN

Introduction: The right ventricle (RV) mechanical property is an important determinant of its function. However, compared to its elasticity, RV viscoelasticity is much less studied, and it remains unclear how pulmonary hypertension (PH) alters RV viscoelasticity. Our goal was to characterize the changes in RV free wall (RVFW) anisotropic viscoelastic properties with PH development and at varied heart rates. Methods: PH was induced in rats by monocrotaline treatment, and the RV function was quantified by echocardiography. After euthanasia, equibiaxial stress relaxation tests were performed on RVFWs from healthy and PH rats at various strain-rates and strain levels, which recapitulate physiological deformations at varied heart rates (at rest and under acute stress) and diastole phases (at early and late filling), respectively. Results and Discussion: We observed that PH increased RVFW viscoelasticity in both longitudinal (outflow tract) and circumferential directions. The tissue anisotropy was pronounced for the diseased RVs, not healthy RVs. We also examined the relative change of viscosity to elasticity by the damping capacity (ratio of dissipated energy to total energy), and we found that PH decreased RVFW damping capacity in both directions. The RV viscoelasticity was also differently altered from resting to acute stress conditions between the groups-the damping capacity was decreased only in the circumferential direction for healthy RVs, but it was reduced in both directions for diseased RVs. Lastly, we found some correlations between the damping capacity and RV function indices and there was no correlation between elasticity or viscosity and RV function. Thus, the RV damping capacity may be a better indicator of RV function than elasticity or viscosity alone. These novel findings on RV dynamic mechanical properties offer deeper insights into the role of RV biomechanics in the adaptation of RV to chronic pressure overload and acute stress.

11.
Placenta ; 137: 70-77, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37087951

RESUMEN

INTRODUCTION: Trophoblast mitochondria play important roles in placental energy metabolism, physiology and pathophysiology. Hyperandrogenism has been associated with mitochondrial abnormalities in pregnancy disorders such as pre-eclampsia, gestational diabetes, and intrauterine growth restriction, but the direct impacts of androgen exposure on placental mitochondrial function are unknown. Given the inherent limitations of studying the human placenta during pregnancy, trophoblast cell lines are routinely used to model placental biology in vitro. The aim of this study was to characterize mitochondrial respiratory function in four commonly used trophoblast cell lines to provide a basis for selecting one well-suited to investigating the impact of androgens on trophoblast mitochondrial function. METHODS: Androgen receptor expression, mitochondrial respiration (JO2) and reactive oxygen species (ROS) release rates were evaluated in three human trophoblast cell lines (ACH-3P, BeWo and Swan-71) and one immortalized ovine trophoblast line (iOTR) under basal and substrate-stimulated conditions using high-resolution fluorespirometry. RESULTS: ACH-3P cells exhibited the greatest mitochondrial respiratory capacity and coupling efficiency of the four trophoblast lines tested, along with robust expression of androgen receptor protein that was found to co-localize with mitochondria by immunoblot and immunofluorescence. Acute testosterone administration (10 nM) tended to decrease ACH-3P mitochondrial JO2 and increase ROS release, while chronic (7 days) testosterone exposure increased expression of mitochondrial proteins, JO2, and ROS release. DISCUSSION: These studies establish ACH-3P as a suitable cell line for investigating trophoblast mitochondrial function, and provide foundational evidence supporting links between hyperandrogenism and placental mitochondrial ROS production with potential relevance to several common pregnancy disorders.


Asunto(s)
Hiperandrogenismo , Trofoblastos , Embarazo , Femenino , Animales , Ovinos , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Androgénicos/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Hiperandrogenismo/metabolismo , Mitocondrias/metabolismo
12.
Anim Reprod Sci ; 252: 107249, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37119563

RESUMEN

Maternal obesity elevates non-esterified fatty acids (NEFA) follicular concentrations. Bovine cumulus-oocyte complexes (COCs) matured in vitro under high NEFA have altered metabolism and reduced quality. Systemically, obesity promotes altered mitochondrial metabolism linked to L-carnitine insufficiency. We hypothesized that L-carnitine supplementation during IVM of bovine COCs in the presence of high NEFA would lessen the negative effects of exposure to excessive lipids on embryonic development and oxidative stress. COCs were collected from abattoir ovaries and matured in four groups: CON (control), LC (3 mM L-carnitine), HN (high NEFA: 200uM oleic, 150uM palmitic and 75uM stearic acid), and HNLC (HN and LC). Mature oocytes were assayed for aerobic and anaerobic metabolism utilizing oxygen and pH microsensors or fertilized in vitro (D0). Cleavage (D3) and blastocyst (D7, D8) rates were assessed. D3 embryos with ≥ 4 cells were stained for cytosolic and mitochondrial ROS. D8 blastocysts were assayed for gene transcript abundance of metabolic enzymes. Oocyte metabolism was not affected by IVM treatment. D3 formation of embryos with ≥ 4 cells were lower in LC or HN than CON or HNLC; blastocyst rates were greater for CON and lower for HN than LC and HNLC. D3 embryo mitochondrial and cytosolic ROS were reduced in HNLC when compared to other groups. IVM in HN altered blastocyst gene transcript abundance when compared to CON, but not LC or HNLC. In conclusion, supplementation with L-carnitine protects oocytes exposed to high NEFA during IVM and improves their developmental competence, suggesting that high lipid exposure may lead to L-carnitine insufficiency in bovine oocytes.


Asunto(s)
Carnitina , Técnicas de Maduración In Vitro de los Oocitos , Animales , Bovinos , Femenino , Embarazo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Carnitina/farmacología , Carnitina/metabolismo , Ácidos Grasos no Esterificados/farmacología , Ácidos Grasos no Esterificados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Blastocisto , Desarrollo Embrionario
13.
Metabolites ; 12(6)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35736495

RESUMEN

Cardiac mitochondrial dysfunction contributes to obesity-associated heart disease. Maternal and postnatal diet plays an important role in cardiac function, yet the impacts of a mismatch between prenatal and postweaning diet on cardiometabolic function are not well understood. We tested the hypothesis that switching to a standard chow diet after weaning would attenuate systemic metabolic disorders and cardiac and mitochondrial dysfunction associated with maternal and postnatal high-fat/high-sucrose (HFHS) diet in mice. Six-month-old male CD1 offspring from dams fed a HFHS diet and weaned to the same HFHS diet (HH) or switched to a standard chow diet (HC) were compared to offspring from dams fed a low-fat/low-sucrose diet and maintained on the same diet (LL). HC did not decrease body weight (BW) but normalized glucose tolerance, plasma cholesterol, LDL, and insulin levels compared to the HH. Systolic function indicated by the percent fractional shortening was not altered by diet. In freshly isolated cardiac mitochondria, maximal oxidative phosphorylation-linked respiratory capacity and coupling efficiency were significantly higher in the HC in the presence of fatty acid substrate compared to LL and HH, with modification of genes associated with metabolism and mitochondrial function. Switching to a standard chow diet at weaning can attenuate the deleterious effects of long-term HFHS in adult male mouse offspring.

14.
Biomed Opt Express ; 13(4): 2103-2116, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35519286

RESUMEN

Mitochondrial redox is an important indicator of cell metabolism and health, with implications in cancer, diabetes, aging, neurodegenerative diseases, and mitochondrial disease. The most common method to observe redox of individual cells and mitochondria is through fluorescence of NADH and FAD+, endogenous cofactors serve as electron transport inputs to the mitochondrial respiratory chain. Yet this leaves out redox within the respiratory chain itself. To a degree, the missing information can be filled in by exogenous fluorophores, but at the risk of disturbed mitochondrial permeability and respiration. Here we show that variations in respiratory chain redox can be detected up by visible-wavelength transient absorption microscopy (TAM). In TAM, the selection of pump and probe wavelengths can provide multiphoton imaging contrast between non-fluorescent molecules. Here, we applied TAM with a pump at 520nm and probe at 450nm, 490nm, and 620nm to elicit redox contrast from mitochondrial respiratory chain hemeproteins. Experiments were performed with reduced and oxidized preparations of isolated mitochondria and whole muscle fibers, using mitochondrial fuels (malate, pyruvate, and succinate) to set up physiologically relevant oxidation levels. TAM images of muscle fibers were analyzed with multivariate curve resolution (MCR), revealing that the response at 620nm probe provides the best redox contrast and the most consistent response between whole cells and isolated mitochondria.

15.
J Phys Chem B ; 126(7): 1404-1412, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35166549

RESUMEN

Hemeproteins are frequent subjects for ultrafast transient absorption spectroscopy (TAS) because of biological importance, strong UV-vis absorption, high photostability, and interesting transient dynamics that depend on redox, conformation, and ligand binding. TAS on hemeproteins is usually performed on isolated, purified proteins, though their response is likely to be different in their native molecular environment, which involves the formation of protein complexes and supercomplexes. Recently, we reported a transient absorption microscopy (TAM) experiment which elicited a transient response from hemeproteins in intact biological tissue using a visible-wavelength pump (530 nm) and probe (490 nm). Here, we find that adaptive noise canceling plus resonant galvanometer scanning enables a high-repetition-rate fiber laser source to make redox-sensitive measurements of cytochrome c (Cyt-c). We investigate the origins of the visible-wavelength response of biological tissue through TAS of intact mitochondrial respiratory supercomplexes, separated via gel electrophoresis. We find that each of these high-molecular-weight gel bands yields a TAS response characteristic of cytochrome hemes, implying that the TAS response of intact cells and tissue originates from not just Cyt-c but a mixture of respiratory cytochromes. We also find differences in excited-state lifetime between wild-type (WT) and a tafazzin-deficient (TAZ) mouse model of mitochondrial disease.


Asunto(s)
Citocromos c , Hemo , Animales , Citocromos c/química , Hemo/química , Humanos , Ratones , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Análisis Espectral
16.
J Anim Sci ; 100(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015873

RESUMEN

Pulmonary hypertension is a noninfectious disease of cattle at altitudes > 1524 m (5,000 ft). Mean pulmonary arterial pressures (PAP) are used as an indicator for pulmonary hypertension in cattle. High PAP cattle (≥50 mmHg) entering the feedlot at moderate elevations have lower feed efficiency as compared to low PAP cattle (< 50 mmHg). The impact of pulmonary arterial pressure on mitochondrial function, oxidative phosphorylation (OXPHOS) protein abundance, and meat color was examined using longissimus lumborum (LL) from high (98 ± 13 mmHg; n = 5) and low (41 ± 3 mmHg; n = 6) PAP fattened Angus steers (live weight of 588 ± 38 kg) during early postmortem period (2 and 48 h) and retail display (days 1 to 9), respectively. High PAP muscle had greater (P = 0.013) OXPHOS-linked respiration and proton leak-associated respiration than low PAP muscles at 2 h postmortem but rapidly declined to be similar (P = 0.145) to low PAP muscle by 48 h postmortem. OXPHOS protein expression was higher (P = 0.045) in low PAP than high PAP muscle. During retail display, redness, chroma, hue, ratio of reflectance at 630 and 580 nm, and metmyoglobin reducing activity decreased faster (P < 0.05) in high PAP steaks than low PAP. Lipid oxidation significantly increased (P < 0.05) in high PAP steaks but not (P > 0.05) in low PAP. The results indicated that high PAP caused a lower OXPHOS efficiency and greater fuel oxidation rates under conditions of low ATP demand in premortem beef LL muscle; this could explain the lower feed efficiency in high PAP feedlot cattle compared to low PAP counterparts. Mitochondrial integral function (membrane integrity or/and protein function) declined faster in high PAP than low PAP muscle at early postmortem. LL steaks from high PAP animals had lower color stability than those from the low PAP animals during simulated retail display, which could be partially attributed to the loss of muscle mitochondrial function at early postmortem by ROS damage in high PAP muscle.


The impact of pulmonary arterial pressure (PAP) on mitochondrial function, oxidative phosphorylation protein abundance, and meat color was examined using longissimus lumborum (LL) from high (98 ± 13 mmHg) and low (41 ± 3 mmHg) PAP fattened Angus steers (live weight of 588 ± 38 kg) during early postmortem period (2 and 48 h) and retail display (days 1 to 9), respectively. The results indicated that high PAP caused a lower oxidative phosphorylation efficiency and greater fuel oxidation rates under conditions of positive energy balance in beef LL muscle. This could explain the lower feed efficiency in high PAP feedlot cattle compared to low PAP counterparts. Mitochondrial integral function declined faster in high PAP than low PAP muscle at early postmortem. LL steaks from high PAP animals had lower color stability than those from the low PAP animals during simulated retail display, which could be partially attributed to the loss of muscle mitochondrial function at early postmortem in high PAP muscle.


Asunto(s)
Altitud , Carne Roja , Animales , Presión Arterial , Bovinos , Color , Carne/análisis , Mitocondrias , Músculo Esquelético/metabolismo , Carne Roja/análisis
17.
Reproduction ; 163(4): 183-198, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379450

RESUMEN

Dietary supplementation is the most feasible method to improve oocyte function and developmental potential in vivo. During three experiments, oocytes were collected from maturing, dominant follicles of older mares to determine whether short-term dietary supplements can alter oocyte metabolic function, lipid composition, and developmental potential. Over approximately 8 weeks, control mares were fed hay (CON) or hay and grain products (COB). Treated mares received supplements designed for equine wellness and gastrointestinal health, flaxseed oil, and a proprietary blend of fatty acid and antioxidant support (reproductive support supplement (RSS)) intended to increase antioxidant activity and lipid oxidation. RSS was modified for individual experiments with additional antioxidants or altered concentrations of n-3 to n-6 fatty acids. Oocytes from mares supplemented with RSS when compared to COB had higher basal oxygen consumption, indicative of higher aerobic metabolism, and proportionately more aerobic to anaerobic metabolism. In the second experiment, oocytes collected from the same mares prior to (CON) and after approximately 8 weeks of RSS supplementation had significantly reduced oocyte lipid abundance. In the final experiment, COB was compared to RSS supplementation, including RSS modified to proportionately reduce n-3 fatty acids and increase n-6 fatty acids. The ability of sperm-injected oocytes to develop into blastocysts was higher for RSS, regardless of fatty acid content, than for COB. We demonstrated that short-term diet supplementation can directly affect oocyte function in older mares, resulting in oocytes with increased metabolic activity, reduced lipid content, and increased developmental potential.


Asunto(s)
Oocitos , Semen , Caballos , Animales , Femenino , Masculino , Dieta/veterinaria , Ácidos Grasos , Antioxidantes , Ácidos Grasos Omega-6
18.
J Inherit Metab Dis ; 45(1): 111-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821394

RESUMEN

Barth syndrome (BTHS) is an X-linked disorder that results from mutations in the TAFAZZIN gene, which encodes a phospholipid transacylase responsible for generating the mature form of cardiolipin in inner mitochondrial membranes. BTHS patients develop early onset cardiomyopathy and a derangement of intermediary metabolism consistent with mitochondrial disease, but the precise alterations in cardiac metabolism that distinguish BTHS from idiopathic forms of cardiomyopathy are unknown. We performed the first metabolic analysis of myocardial tissue from BTHS cardiomyopathy patients compared to age- and sex-matched patients with idiopathic dilated cardiomyopathy (DCM) and nonfailing controls. Results corroborate previous evidence for deficiencies in cardiolipin content and its linoleoyl enrichment as defining features of BTHS cardiomyopathy, and reveal a dramatic accumulation of hydrolyzed (monolyso-) cardiolipin molecular species. Respiratory chain protein deficiencies were observed in both BTHS and DCM, but a selective depletion of complex I was seen only in BTHS after controlling for an apparent loss of mitochondrial density in cardiomyopathic hearts. Distinct shifts in the expression of long-chain fatty acid oxidation enzymes and the tissue acyl-CoA profile of BTHS hearts suggest a specific block in mitochondrial fatty acid oxidation upstream of the conventional matrix beta-oxidation cycle, which may be compensated for by a greater reliance upon peroxisomal fatty acid oxidation and the catabolism of ketones, amino acids, and pyruvate to meet cardiac energy demands. These results provide a comprehensive foundation for exploring novel therapeutic strategies that target the adaptive and maladaptive metabolic features of BTHS cardiomyopathy.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiomiopatías/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ácidos Grasos/metabolismo , Aciltransferasas/genética , Adolescente , Síndrome de Barth/genética , Cardiolipinas/metabolismo , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Mutación , Miocardio/metabolismo , Oxidación-Reducción
19.
Psychoneuroendocrinology ; 129: 105238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930756

RESUMEN

Depression and cardiovascular disease reduce quality of life and increase mortality risk. These conditions commonly co-occur with sex-based differences in incidence and severity. However, the biological mechanisms linking the disorders are poorly understood. In the current study, we hypothesized that the infralimbic (IL) prefrontal cortex integrates mood-related behaviors with the cardiovascular burden of chronic stress. In a rodent model, we utilized optogenetics during behavior and in vivo physiological monitoring to examine how the IL regulates affect, social motivation, neuroendocrine-autonomic stress reactivity, and the cardiac consequences of chronic stress. Our results indicate that IL glutamate neurons increase socio-motivational behaviors specifically in males. IL activation also reduced endocrine and cardiovascular stress responses in males, while increasing reactivity in females. Moreover, prior IL stimulation protected males from subsequent chronic stress-induced sympatho-vagal imbalance and cardiac hypertrophy. Our findings suggest that cortical regulation of behavior, physiological stress responses, and cardiovascular outcomes fundamentally differ between sexes.


Asunto(s)
Afecto , Sistema Nervioso Autónomo/fisiología , Sistema Límbico/fisiología , Corteza Prefrontal/fisiología , Caracteres Sexuales , Estrés Psicológico/fisiopatología , Animales , Cardiomegalia/fisiopatología , Enfermedad Crónica , Femenino , Ácido Glutámico/metabolismo , Masculino , Modelos Animales , Motivación , Neuronas/metabolismo , Sistemas Neurosecretores/metabolismo , Optogenética , Calidad de Vida , Ratas , Ratas Sprague-Dawley , Conducta Social
20.
Reproduction ; 161(4): 399-409, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539317

RESUMEN

Advanced maternal age is associated with a decline in fertility and oocyte quality. We used novel metabolic microsensors to assess effects of mare age on single oocyte and embryo metabolic function, which has not yet been similarly investigated in mammalian species. We hypothesized that equine maternal aging affects the metabolic function of oocytes and in vitro-produced early embryos, oocyte mitochondrial DNA (mtDNA) copy number, and relative abundance of metabolites involved in energy metabolism in oocytes and cumulus cells. Samples were collected from preovulatory follicles from young (≤14 years) and old (≥20 years) mares. Relative abundance of metabolites in metaphase II oocytes (MII) and their respective cumulus cells, detected by liquid and gas chromatography coupled to mass spectrometry, revealed that free fatty acids were less abundant in oocytes and more abundant in cumulus cells from old vs young mares. Quantification of aerobic and anaerobic metabolism, respectively measured as oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in a microchamber containing oxygen and pH microsensors, demonstrated reduced metabolic function and capacity in oocytes and day-2 embryos originating from oocytes of old when compared to young mares. In mature oocytes, mtDNA was quantified by real-time PCR and was not different between the age groups and not indicative of mitochondrial function. Significantly more sperm-injected oocytes from young than old mares resulted in blastocysts. Our results demonstrate a decline in oocyte and embryo metabolic activity that potentially contributes to the impaired developmental competence and fertility in aged females.


Asunto(s)
Células del Cúmulo/patología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Lípidos/análisis , Edad Materna , Mitocondrias/patología , Oocitos/patología , Oogénesis , Animales , Células del Cúmulo/metabolismo , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Femenino , Caballos , Mitocondrias/metabolismo , Oocitos/metabolismo , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...